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Abstract

Dataset curation has become a basis for strong
large language model (LLM) performance.
While various rule-based filtering heuristics ex-
ist for English and multilingual datasets, model-
based filtering techniques have primarily fo-
cused on English. To address the disparity stem-
ming from limited research on non-English
languages, we develop a model-based filter-
ing framework for multilingual datasets that
aims to identify a diverse set of structured and
knowledge-rich samples. Our approach empha-
sizes transparency, simplicity, and efficiency,
leveraging Transformer- and FastText-based
classifiers to ensure the broad accessibility of
our technique and data. We conduct compre-
hensive ablation studies on the FineWeb-2 web
crawl dataset across diverse language families,
scripts, and resource availability to demonstrate
the effectiveness of our method. Training a
1B-parameter Llama model for 70B and 119B
tokens, our approach can match the baseline
MMLU score with as little as 15% of the train-
ing tokens, while also improving across other
benchmarks and mitigating the curse of multi-
linguality. These findings provide strong evi-
dence for the generalizability of our approach
to other languages. As a result, we extend our
framework to 20 languages for which we re-
lease the refined pretraining datasets.

1 Introduction

Large Language Models (LLMs) have demon-
strated impressive performance improvements
when trained on increasingly larger datasets and
model sizes (Brown et al., 2020). While Brown
et al. (2020) already observed the importance of
using a cleaned version of Common Crawl for im-
proved performance, the high cost of LLM training
has further motivated research into better pretrain-
ing quality filters.

*Equal contribution

Deduplication and heuristic-based dataset clean-
ing have become standard practices in data cura-
tion (Rae et al., 2021; Raffel et al., 2020; De Gibert
et al., 2024). These quality filters are often comple-
mented by additional filters, such as the removal of
personally identifiable information (PII) (Penedo
et al., 2024a) or model-based toxicity filtering (Sol-
daini et al., 2024). Recently, model-based filtering
has also emerged as a promising method for quality
filtering. The release of FineWeb-Edu (Penedo
et al., 2024a) demonstrated that pretraining on
just 10% of the tokens (38B) from an English
dataset filtered using a model-based approach can
achieve performance comparable to models trained
on 350B tokens of unfiltered data. Moreover, when
trained on equivalent amounts of data, this model
largely outperforms the baseline. Concurrently,
the release of DataComp-LM (DCLM) (Li et al.,
2024b) showed that competitive performance can
be achieved using a simple and efficient model-
based approach, namely a FastText (Joulin et al.,
2017) classifier trained on a carefully selected train-
ing dataset.

However, these recent advances have primarily
focused on English data. This emphasis risks fur-
ther widening the disparity in LLM performance
between languages, as less than half of internet con-
tent is written in English1. To address this concern,
we aim to extend model-based filtering frameworks
to multilingual datasets. While model perplexity-
based filtering is commonly applied to multilingual
datasets (Wenzek et al., 2019; Laurençon et al.,
2022; Nguyen et al., 2023), the current state-of-the-
art, FineWeb-2 (Penedo et al., 2024c), primarily
relies on heuristic-based filters. In this work, we
focus on model-based filtering with a quality def-
inition that emphasizes: 1) structured data and 2)
knowledge-rich data samples, to enhance multilin-
gual pretraining datasets.

1w3techs.com/technologies/overview/content_language

https://w3techs.com/technologies/overview/content_language
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Figure 1: Average accuracy on Chinese (CMMLU),
German (MMLU), and French (MMLU) benchmarks
during training: FineWeb-2 baseline compared to our
methods (10% data retention).

To achieve this, we leverage embedding-based
classification models. Firstly, we adopt the Fast-
Text quality filtering approach from DCLM to de-
velop a unified framework for multilingual datasets
that span diverse language families, scripts, and
resource availability, focusing on Chinese, Ger-
man, French, Arabic, and Danish as representative
languages for our experiments. Additionally, we
extend this embedding-based approach by incorpo-
rating Transformer (Vaswani et al., 2023) embed-
dings, specifically XLM-RoBERTa (Conneau et al.,
2020), for filtering. Figure 1 shows the clear perfor-
mance gains of our best FastText and Transformer
embedding-based approaches over the state-of-the-
art baseline FineWeb-2 data.

In summary, our contributions are as follows:

• We develop a transparent, simple, and uni-
fied framework for multilingual model-based
filtering at web scale, enabling data curation
across diverse language families, scripts and
resource availability.

• We present comprehensive per-language ab-
lation studies of embedding-based multilin-
gual quality filtering on top of the FineWeb-2
dataset (Penedo et al., 2024c), achieving per-
formance comparable to the baseline while
using as little as 15% of the tokens. Addition-
ally, our experiments show that our dataset
doesn’t suffer from the curse of multilingual-
ity (Chang et al., 2023).

• We evaluate the impact of different data se-
lection classifiers, in particular their training
datasets, on the downstream performance of
LLMs.

• We release the refined pretraining dataset2 cov-

2huggingface.co/datasets/epfml/FineWeb2-HQ

ering 20 languages3 and its English version4,
filtered using our proposed framework, along
with the codebase, to advance multilingual
language modeling.

2 Related Work

Data Curation. In order to pretrain LLMs on a
large amount of diverse texts, Common Crawl5

is often used as the base dataset. However, early
works already observed that performing quality
filtering on Common Crawl is crucial for model
performance (Brown et al., 2020). There exist var-
ious data curation approaches, such as deduplica-
tion (Lee et al., 2022), PII removal (Subramani
et al., 2023), or toxicity filtering (Arnett et al.,
2024). Another important aspect is quality fil-
tering of the documents. For this, the definition
of quality is an important aspect. A common ap-
proach is to use heuristics to remove documents
outside of the target distribution, such as filtering
based on average word length, existence of punctu-
ation, or document length (Rae et al., 2021; Raffel
et al., 2020). Another approach is to define model-
based filters, where research has focused on per-
plexity measure of the text (Wenzek et al., 2019;
Marion et al., 2023; Ankner et al., 2024), distri-
butional similarity measures (Li et al., 2024b) and
LLM-based quality assessment (Gunasekar et al.,
2023; Wettig et al., 2024; Sachdeva et al., 2024;
Penedo et al., 2024a). In this work, we build upon
previous curated datasets based on heuristic filter-
ing, namely the state-of-the-art dataset FineWeb-
2 (Penedo et al., 2024c), and focus on model-based
filtering for structured and knowledge-rich docu-
ments relying on textual embeddings.

Curated English datasets. One of the early
curated datasets was C4 (Raffel et al., 2020), fol-
lowed by MassiveText (Rae et al., 2021). Re-
finedWeb (Penedo et al., 2023) was an impor-
tant step forward, demonstrating that filtered web
data can outperform selected high-quality data
sources. Although these datasets have not been
made fully publicly available, their filtering tech-
niques have been expanded upon in recent fully
public datasets, such as Dolma (Soldaini et al.,
2024), FineWeb, FineWeb-Edu (Penedo et al.,

3Russian, Chinese, German, Japanese, Spanish, French,
Italian, Portuguese, Polish, Dutch, Indonesian, Turkish, Czech,
Vietnamese, Swedish, Persian, Arabic, Greek, Danish, Hun-
garian (dataset details in Appendix A)

4huggingface.co/datasets/epfml/FineWeb-HQ
5commoncrawl.org

https://huggingface.co/datasets/epfml/FineWeb2-HQ
https://huggingface.co/datasets/epfml/FineWeb-HQ
https://commoncrawl.org/


2024a) and DCLM (Li et al., 2024b). While
FineWeb primarily relies on filter heuristics for
data quality, Dolma adopts model perplexity filter-
ing. FineWeb-Edu takes model-based filtering a
step further and relies on LLM-based quality as-
sessment. DCLM, a concurrent work, has achieved
competitive performance using a FastText (Joulin
et al., 2017) classifier trained on a carefully selected
training dataset. In this work we adapt and extend
this approach to the multilingual context.

Curated Multilingual Datasets. Analogously
to English datasets, significant work has been
done in the multilingual space. For example, CC-
Net (Wenzek et al., 2019) has been influential, with
its language identification and model perplexity
filtering for data quality being adopted in subse-
quent datasets. Similar to earlier English datasets,
CCNet was not published directly, but rather pro-
vided tools for data cleaning. RedPajama (To-
gether Computer, 2023) is a prominent multilin-
gual dataset relying on these filtering techniques,
offering data in 5 European languages. Other
datasets, such as OSCAR (Ortiz Suárez et al.,
2019; Abadji et al., 2021; Abadji et al., 2022),
mC4 (Xue et al., 2021), ROOTS (Laurençon et al.,
2022), MADLAD-400 (Kudugunta et al., 2023),
CulturaX (Nguyen et al., 2023), and HPLT (de Gib-
ert et al., 2024), expanded coverage across a variety
of language families and scripts. These datasets of-
fer refined content for hundreds of languages, while
FineWeb-2 (Penedo et al., 2024c) pushes the limit
to thousands of languages and further improves
performance. Our work also focuses on filtering
quality samples across various language families
and scripts. However, we limit our scope to 20 lan-
guages, as the number of documents drops quickly
for lower-resource languages, creating a trade-off
between retaining sufficient pretraining tokens and
ensuring data quality (Muennighoff et al., 2023;
Held et al., 2025).

Multilingual Embedding Models. Early word
embedding models like Word2Vec (Mikolov et al.,
2013) and GloVe (Pennington et al., 2014) lacked
contextual understanding. FastText (Bojanowski
et al., 2017) built upon them and improved per-
formance by incorporating subword information.
Transformer (Vaswani et al., 2023) models like
BERT (Devlin et al., 2019) and GPT (Radford
et al., 2018) then revolutionized the field with
context-aware embeddings. Multilingual models
like mBERT, XLM (Lample and Conneau, 2019),
and XLM-RoBERTa (Conneau et al., 2020) fur-

ther advanced cross-lingual understanding, with
recent open-source LLMs pushing performance
even higher (Llama Team, 2024; Mistral AI, 2025).
Using such Transformer models, documents and
representative samples can be mapped into a shared
embedding space to estimate their similarity. Fo-
cusing on transparency, simplicity and efficiency
in our work, we use FastText and XLM-RoBERTa
for our model-based filtering.

Multilingual Evaluation. Evaluating LLMs re-
quires diverse benchmarks testing linguistic and
cognitive abilities like reading comprehension, rea-
soning, and knowledge. While established bench-
marks such as MMLU (Hendrycks et al., 2020) and
ARC (Clark et al., 2018) exist for English evalu-
ation, assessments in other languages often rely
on translations from English sources, as seen in
XNLI (Conneau et al., 2018) and the machine-
translated version of MMLU (Lai et al., 2023).
However, translations can be problematic, failing
to capture cultural nuances or introducing "trans-
lationese" (Romanou et al., 2024). Recent work
by Romanou et al. (2024) and Singh et al. (2024a)
emphasizes the importance of culturally sensitive,
natively collected benchmarks. Task difficulty and
formulation also impact model performance when
trained for shorter durations (Kydlíček et al., 2024).
In our work, we follow FineTasks, a recent evalua-
tion tasks suite by Kydlíček et al. (2024) to assess
our model-based filtering approaches across multi-
ple languages.

3 Methods

In this work, we present our model-based filtering
approaches. Our methodology is structured into
two key components: 1) we select suitable train-
ing datasets, aiming to identifying a diverse set
of structured and knowledge-rich samples and 2)
we describe the different models, namely FastText
and Transformer embedding-based filters, used to
capture and leverage these characteristics.

3.1 Classifier Training Dataset

Representative Sample Selection. Our goal is to
identify a diverse set of structured and knowledge-
rich samples, especially within a multilingual con-
text. We define two criteria for our training datasets:
1) the samples must be informative and well-
structured and 2) the datasets must be available
in multiple languages. When we refer to structured
and knowledge-rich samples, we mean datasets



with predictable formats (e.g., question–response
pairs) and a high density of factual content. While
some multilingual benchmark datasets meet these
criteria precisely, it is important to note that we do
not train the LLM directly on this data. Instead,
we train a proxy model to assess pretraining data
quality. Nevertheless, we must remain cautious
about potentially increased pretraining data con-
tamination stemming from this approach. We show
in Appendix C.6 that our results are not due to
contamination.

Based on our criteria, we selected the following
datasets as representative examples.

• Aya Collection. A prompt completion dataset
comprising ∼514M samples covering a va-
riety of tasks, generated using instruction-
style templates in 101 languages (Singh et al.,
2024b).

• Aya Dataset. Human-annotated instruc-
tion fine-tuning dataset consisting of
∼202K prompt-completion pairs in 65
languages (Singh et al., 2024b).

• MMLU. Dataset contains ∼14K multiple-
choice knowledge questions on various topics
in English (Hendrycks et al., 2020). Multilin-
gual version was translated into 14 languages
by professional translators (OpenAI, 2024).

• OpenAssistant-2. The dataset contains ∼14K
user-assistant conversations with multiple
messages in 28 languages (Fischer et al.,
2024).

• Include-Base-44. Multiple-choice questions
focused on general and regional knowledge,
extracted from academic and professional ex-
ams. Spanning 44 languages, it includes a to-
tal of ∼23K samples (Romanou et al., 2024).

Representative Sample Collection. MMLU
and Include-Base-44 are highly curated benchmark
datasets, containing questions with verifiable an-
swers from examinations. The Aya Dataset is
human-curated, while OpenAssistant-2 is partially
human-curated and partially generated by large lan-
guage models (LLMs). In contrast, the Aya Col-
lection consists of various AI-generated samples
without quality guarantee, though it represents the
largest and most multilingual of the five.

To address the quality difference, we create two
Multilingual Knowledge Collection (MKC) config-

urations which allow us to evaluate the trade-off
between data quality and scale:

• MKC: Includes Include-Base-44,
OpenAssistant-2, MMLU, and the Aya
Dataset

• MKC+: Includes MKC and the Aya Collection

Dataset Creation. For our model-based filter-
ing approaches, our goal is to identify documents
from the pretraining dataset that are most similar
to our representative samples, with the notion of
similarity determined by the specific classifier used.
We can directly measure similarity to our training
data, for example, by calculating cosine similar-
ity with training samples in the embedding space.
Alternatively, following the approach of Li et al.
(2024b), the task can be framed as a binary classi-
fication problem, with the representative samples
as the positive class. For the negative class, we can
subsample documents from our pretraining dataset,
under the assumption that the majority of these doc-
uments are not well-structured or knowledge-rich.
We use both approaches for our classifiers.

To create the binary classification training
dataset, we selected 80K random examples from
the training set (MKC or MKC+) as positive sam-
ples and 80K random examples from FineWeb-2
as negative samples. For smaller datasets, such
as Include-Base-44, the entire dataset was used.
The same training dataset was utilized across all
model-based filtering approaches, disregarding neg-
ative samples when unnecessary. Additionally, we
created a training dataset for each language indi-
vidually to avoid leaking language-specific biases
to data of other languages.

Sample Pre-processing. We applied no pre-
processing to the FineWeb-2 (negative) samples but
performed minimal pre-processing on the represen-
tative (positive) samples. For instance, in datasets
like MMLU or OpenAssistant-2, we concatenated
various sample components. For the Aya Collec-
tion, we resolved encoding issues in non-Latin lan-
guages and removed samples containing <unk>
tokens, which were particularly prevalent in Arabic
data (37.1%).

3.2 FastText-based Filtering (FT)
To efficiently process datasets with over 100 mil-
lion documents (Penedo et al., 2024c), similar to
DCLM (Li et al., 2024b), we used a binary Fast-
Text classifier (Joulin et al., 2017). FastText runs on



CPU and can be deployed across multiple cores, for
example using DataTrove (Penedo et al., 2024b).

We trained our FastText classifier on the pro-
cessed training set using 2-gram features (4-gram
for Chinese). These classifiers were then used to
assign scores to all documents in the pretraining
dataset. To filter the dataset, we applied a score
threshold based on the desired retention percentage
of documents. This approach balances dataset size
and the predicted quality of the samples.

3.3 Transformer Embedding-based Filtering
To leverage rich semantic information based on
contextual relationships, we utilized Transformer
model embeddings. Specifically, we selected a
pretrained XLM-RoBERTa base model (Conneau
et al., 2020) due to its support of 100 languages, a
relatively small size of 279M parameters, and its
transparent training procedure. This choice enabled
us to process web-scale data efficiently without
being restricted to a single language and aligned
with our commitment to open science.

To retain general embeddings that can be reused
across methods, we opted against fine-tuning the
model. For each document from our datasets,
we computed the 768-dimensional embedding by
mean pooling the embeddings of the output se-
quence. Since the model has a fixed maximum
sequence length of 512 tokens, we considered only
the first 512 tokens of each document, assuming
they are representative of the entire document.

After computing the embeddings of our corpora,
we experimented with two methods: 1) classifica-
tion of embeddings using a multi-layer perceptron
and 2) cosine similarity between the embeddings.
As in the FastText approach, we scored each docu-
ment and applied a threshold to retain the desired
percentage of the highest-scoring documents.

Multi-Layer Perceptron (MLP). We trained a
single-hidden-layer neural network with a dimen-
sion of 256, the ReLU activation function, a 20%
dropout, and the sigmoid function on the output.
The network was trained for 6 epochs using the
AdamW optimizer (Loshchilov and Hutter, 2019)
with a constant learning rate 0.0003 and binary
cross-entropy loss. We computed document scores
using the output layer of the MLP model, which
used XML-RoBERTa document embeddings as in-
put.

Cosine Similarity (CS). We computed the doc-
ument scores as the maximum cosine similarity
between its embeddings and a set of K randomly

sampled positive sample embeddings. We experi-
mented with varying values of K, including 1024,
2048, 4096, 8192, and 16384. However, we did
not observe a significant differences in the doc-
uments with high scores across these variations
when manually inspecting the data. To strike a bal-
ance between the diversity of the positive samples
and computational efficiency, we chose K = 8192
for our experiments.

4 Experiments

4.1 Experimental Setup

Technical Details. We evaluate 1B-parameter
Llama models (Llama Team, 2024) to demonstrate
the effectiveness of our model-based filtering ap-
proaches. The models are trained on either 70B
or 119B tokens, balancing token quality and diver-
sity. The smaller dataset (70B tokens) exposes
the model to each token at most once (with a
few exceptions where some tokens appear twice).
The larger dataset (119B tokens) simulates longer
training, resulting in increased token repetition.
Training utilizes the HuggingFace Nanotron li-
brary (Hugging Face, 2024a) with the AdamW op-
timizer (Loshchilov and Hutter, 2019) and a WSD
learning rate schedule (Hägele et al., 2024).

To minimize the need for costly hyperparameter
tuning, we maintain a consistent setup across all
experiments. Specifically, we adopt the DeepSeek
scaling law (DeepSeek-AI et al., 2024) with a batch
size of 1.6M tokens, learning rate of 0.0008, and
2000 warmup steps.

As the base dataset, we use FineWeb-2 (Penedo
et al., 2024c), which has been shown to provide a
strong baseline across a variety of languages. Since
FineWeb-2 is globally deduplicated, we rehydrate
both filtered and unfiltered data using the hyperpa-
rameters recommended by Penedo et al. (2024c).

To validate our method on English, we use three
datasets: FineWeb (Penedo et al., 2024a) as the
baseline, along with FineWeb-Edu (Penedo et al.,
2024a) and DCLM (Li et al., 2024b), both of which
represent the current state-of-the-art. Tokeniza-
tion is performed using the multilingual Mistral v3
(Tekken) tokenizer (Mistral AI, 2024). We use ap-
proximatly 152K compute hours distributed across
80 NVIDIA GH200 chips for our experiments, with
a model training on 119B tokens costing approxi-
mately 1.1K compute hours.

Evaluation. Our evaluation prioritizes a diverse
range of tasks to ensure the models retain well-



rounded capabilities, rather than focusing exclu-
sively on knowledge-based tasks. Specifically, we
include tasks covering reading comprehension, gen-
eral knowledge, natural language understanding,
common-sense reasoning, and generative tasks in
the target language. To evaluate our approach, we
use the HuggingFace LightEval library (Fourrier
et al., 2023).

For French, Chinese, and Arabic, we utilize the
FineTasks (Kydlíček et al., 2024) multilingual eval-
uation suite, which is designed to provide mean-
ingful signals even for models trained in the order
of 100B tokens. We select analogous tasks for
German and Danish. For English, we rely on the
SmolLM tasks suite (Hugging Face, 2024b). A
complete list of tasks and their evaluation metrics
for each language is provided in Appendix D.

Model Selection. Following the method of Fine-
Tasks (Kydlíček et al., 2024), we determine the
optimal filter by computing a global rank score
across individual metrics and languages and then
averaging those scores. For a detailed description
of the average rank computation, please refer to
Appendix E.

4.2 Experimental Results & Discussion

4.2.1 Model Selection

In Section 3, we introduced several model-based
filtering approaches. But which of these performs
the best? We evaluate which combination of our de-
fined classifier training datasets (MKC or MKC+)
and filtering methods (FT, MLP or CS) achieve the
highest performance. Table 1 presents the overall
ranking across our representative language selec-
tion (Chinese, German, French, Arabic, Danish)
and training runs of 70B and 119B tokens. Analo-
gous to the DCLM filtering recipe (Li et al., 2024b),
the results are based on a dataset that retains 10%
of the documents for the high-resource datasets
(Chinese, German, French) and keeps 56% and
65% of the documents for the lower-resource lan-
guages (Arabic and Danish, respectively). These
percentages maintain approximately 70B tokens,
under the assumption of uniform token distribution
across documents. We also exclude approaches
that use MKC for training on Danish, as it lacks
sufficient training data. For detailed, per-language
results, please refer to Appendix C.1.

Table 1 demonstrates that MLP MKC+ approach
outperforms all other approaches. Interestingly,
the high- and low-scored samples presented in Ap-

Approach Average Rank

MLP MKC+ 4.35
MLP MKC 6.11
FT MKC+ 7.17
FT MKC 8.04
CS MKC 8.10
Baseline 8.72
CS MKC+ 8.79

Table 1: Benchmark performance comparison: Average
rank between FineWeb-2 baseline and our proposed fil-
tering methods (FT, MLP, and CS) trained on MKC+

or MKC, retaining top 10% for Chinese, German, and
French, 56% for Arabic, and 65% for Danish. The aver-
age rank is computed across FineTasks for 1B-parameter
models evaluated after 70B and 119B tokens.

pendix F align with the observed rankings. Figure 2
further highlights the strong performance of MLP
MKC+, particularly for high-resource languages,
where it largely outperforms the baseline. For
lower-resource languages—where less data was fil-
tered—the performance gains are less pronounced.
Notably, FT filtering is also competitive. Given the
computational expense of XLM-RoBERTa embed-
dings, FastText can be a promising alternative in
resource-constrained setups.

4.2.2 Threshold Selection
In Section 4.2.1, we base our model selection on
experiments that retain top 10% of the data for
high-resource languages. But is this the optimal
threshold? Following the methodology of Li et al.
(2024b), we analyze the impact of varying filter
strengths on performance for Chinese, German,
and French, using our MLP and FT filtering meth-
ods. The results are summarized in Table 2, with a
comprehensive analysis, including results for CS,
provided in Appendix C.2 (Table 12). Consistent
with their findings, we observe that retaining top
10% of the data is a competitive threshold, par-
ticularly for approaches using the MKC+ dataset.
Interestingly, approaches using MKC perform bet-
ter with higher retention. In Appendix C.2, we
investigate how some filters’ bias toward shorter
documents affects threshold selection, though our
analysis indicates multiple factors contribute to op-
timal threshold determination.

4.2.3 Training Data Analysis
The experiments in Sections 4.2.1 and 4.2.2 are
based on the training datasets MKC and MKC+.
But is the diversity introduced by combining vari-
ous base datasets truly necessary? We evaluate the
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Figure 2: Benchmark performance comparison: Accuracy during 119B token training between baseline methods
(FineWeb, DCLM, FineWeb-Edu, FineWeb-2) and our proposed filtering approaches (FT, MLP, and CS), trained on
MKC+. Our approaches use 10% data retention for English, Chinese, German, and French, 56% for Arabic, and
65% for Danish. For English, Chinese, German, and French, baseline-level performance is reached at approximately
20B tokens (16.7% of total).

Approach Threshold Average Rank

MLP MKC+ 10% 8.85
MLP MKC+ 15% 9.44
MLP MKC 20% 11.37
MLP MKC 15% 11.70
MLP MKC 10% 11.95
MLP MKC+ 20% 11.97
FT MKC+ 10% 13.92
FT MKC 15% 14.62
FT MKC 10% 14.74
FT MKC 20% 15.62
FT MKC+ 15% 16.27
FT MKC+ 20% 16.51
Baseline – 18.55

Table 2: Benchmark performance comparison: Average
rank between FineWeb-2 baseline and our proposed fil-
tering methods (FT, MLP) trained on MKC+ or MKC,
retaining top 10%, 15% or 20% of documents. The aver-
age rank is computed across FineTasks for 1B-parameter
models evaluated on Chinese, German and French after
70B and 119B tokens.

impact of each base dataset individually and com-
pare it to the combined MKC+ dataset. For this
ablation study, we use our best filtering method
(MLP with a top 10% retention) and train the mod-
els on 30B tokens. This token count is chosen
to match the size of the smallest filtered dataset,
ensuring consistency across comparisons.

The results, presented in Table 3, show that de-
spite the absence of a quality guarantee for all sam-
ples in the Aya Collection, this dataset yields strong

performance, making our approach applicable for
various languages. Overall, we observe that the
diversity resulting from combining all individual
training datasets gives the best results.

Dataset Average Rank

MKC+ 2.52
Aya Collection 2.91
Aya Dataset 3.17
MMLU 3.57
Baseline 4.09
OpenAssistant-2 4.53
Include-Base-44 5.42

Table 3: Benchmark performance comparison: Aver-
age rank between FineWeb-2 baseline and MLP filter-
ing trained on either full MKC+ or its individual com-
ponents, retaining top 10% for Chinese, German, and
French, 56% for Arabic, and 65% for Danish. The aver-
age rank is computed across FineTasks for 1B-parameter
models trained on 30B tokens per language.

Interestingly, models trained exclusively on
Include-Base-44 and OpenAssistant-2 perform
worse overall than the baseline. This may re-
flect dataset characteristics—Include-Base-44 is
small and domain-specific, containing mostly driv-
ing license exam questions in its German subset.
OpenAssistant-2 includes a limited number of sam-
ples, with fewer than 2K positive samples per train-
ing set, which likely negatively impacts classifier
performance. In Appendix C.3, we reexamine how
document length bias relates to model performance,



confirming our Section 4.2.2 finding that perfor-
mance depends on factors beyond document length.
In Appendix C.4, we further verify our filtering
approach preserves sufficient dataset diversity.

4.2.4 Approach Validation on English

Dataset Ours DCLM∗ FW-Edu∗ FW∗

Average Rank 1.8333 2.3889 2.4444 3.3333
ARC (Challenge) 0.3550 0.3530 0.3850 0.3010
ARC (Easy) 0.6670 0.6470 0.6970 0.5880
CommonsenseQA 0.3870 0.4100 0.3770 0.3850
HellaSwag 0.6040 0.5960 0.5700 0.5930
MMLU 0.3400 0.3160 0.3470 0.3030
OpenBookQA 0.3860 0.3840 0.4180 0.3560
PIQA 0.7510 0.7510 0.7410 0.7620
WinoGrande 0.5720 0.5610 0.5660 0.5550
TriviaQA 0.0820 0.1240 0.0320 0.0370

Table 4: English benchmark performance: Our MLP
MKC+ approach (top 10% documents) compared to
FineWeb, DCLM, and FineWeb-Edu baselines. The
average rank is computed across SmolLM tasks using
1B-parameter models trained on 119B tokens.

Previous experiments have shown strong perfor-
mance of our MLP MKC+ approach. But do these
results translate to English? Table 4 presents the
performance of MLP MKC+ with 10% retention
applied to the English FineWeb dataset (Penedo
et al., 2024a). Our method is compared against
FineWeb and baselines using model-based filtered
datasets, including DCLM (Li et al., 2024b) and
FineWeb-Edu (Penedo et al., 2024a). To save com-
putational resources, we use the 6 most recent
FineWeb and FineWeb-Edu dumps and the first par-
tition of DCLM6, which we denote with ∗. Each of
these subsets contains more than 119B tokens, with
FineWeb retaining this size even after applying our
filtering retaining top 10% of the documents.

While each approach demonstrates strengths in
different benchmarks, as seen from Table 4 and
Figure 2, the overall average rank results indicate
that our method outperforms all other baselines.

4.2.5 Mitigating the Curse of Multilinguality

Although not our main focus, we found that our
refined datasets boost the performance of multi-
lingual models. We trained a multilingual 1B-
parameter model on 595B tokens (119B per lan-
guage), covering all five languages: Chinese, Ger-
man, French, Arabic and Danish. We compared
each language’s results to its monolingual counter-
part trained on 119B tokens. Training is performed

6huggingface.co/datasets/mlfoundations/dclm-baseline-
1.0-parquet

once for our filtered data and once for original (un-
filtered) FineWeb-2.

Dataset OursM Ours FW-2 FW-2M

Average Rank 1.8333 2.0556 3.0000 3.1111
Belebele 0.3667 0.3533 0.3444 0.3511
HellaSwag 0.5270 0.5380 0.5180 0.4970
X-CSQA 0.2740 0.2740 0.2870 0.2750
XNLI 2.0 0.7660 0.7400 0.7180 0.7330
FQuAD 0.3212 0.2803 0.2401 0.2459
MMLU 0.2841 0.2895 0.2706 0.2735
Mintaka 0.0456 0.0438 0.0712 0.0579
X-CODAH 0.2900 0.2667 0.2633 0.2567
ARC (Challenge) 0.2970 0.3180 0.2850 0.2670

Table 5: French benchmark performance: Multilingual
LLMs (M ) trained on FineWeb-2 or our MLP MKC+

refined dataset (retaining top 10% for Chinese, German
and French, 56% for Arabic, 65% for Danish) with
595B tokens, compared to monolingual models trained
on 119B tokens. The average rank is computed across
FineTasks for 1B-parameter models.

The results for French are presented in Table 5.
Surprisingly, the curse of multilinguality (Chang
et al., 2023) turns into a benefit for our quality
filtered datasets: The multilingual model outper-
forms its monolingual counterpart, when both mod-
els have seen an equal amount of tokens of the
language of interest. Meanwhile, for unfiltered
training data, the multilingual LLM suffers from
the curse as expected. The disappearance of the
curse is consistent across all languages except Chi-
nese. Detailed results for the other languages are
provided in Appendix C.5.

5 Conclusion

In this work, we developed a framework for
model-based filtering of web-scale multilingual
pretraining datasets, demonstrating consistent im-
provements on LLM benchmarks across a wide
range of languages. Our Transformer embedding-
based classifier, MLP MKC+, outperforms state-
of-the-art methods on both English and multi-
lingual datasets, even when decontaminating the
datasets or using them for training multilingual
LLMs. While our FastText-based filtering ap-
proach performed well and shows promise in
resource-constrained setups, MLP MKC+ consis-
tently outperformed all other methods and can be
easily scaled to other languages. These results
provide strong empirical evidence supporting our
expansion of the framework to 20 languages. We re-
lease the corresponding refined pretraining datasets
and code, contributing to the advancement of mul-
tilingual language modeling.

https://huggingface.co/datasets/mlfoundations/dclm-baseline-1.0-parquet
https://huggingface.co/datasets/mlfoundations/dclm-baseline-1.0-parquet
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Fadaei, Irem Ergün, Ifeoma Okoh, and 14 oth-
ers. 2024b. Aya dataset: An open-access collec-
tion for multilingual instruction tuning. Preprint,
arXiv:2402.06619.

Luca Soldaini, Rodney Kinney, Akshita Bhagia, Dustin
Schwenk, David Atkinson, Russell Authur, Ben Bo-
gin, Khyathi Chandu, Jennifer Dumas, Yanai Elazar,
and 1 others. 2024. Dolma: An open corpus of
three trillion tokens for language model pretraining
research. arXiv preprint arXiv:2402.00159.

Nishant Subramani, Sasha Luccioni, Jesse Dodge, and
Margaret Mitchell. 2023. Detecting personal infor-
mation in training corpora: an analysis. In Proceed-
ings of the 3rd Workshop on Trustworthy Natural
Language Processing (TrustNLP 2023), pages 208–
220, Toronto, Canada. Association for Computational
Linguistics.

Kai Sun, Dian Yu, Dong Yu, and Claire Cardie. 2020. In-
vestigating prior knowledge for challenging Chinese
machine reading comprehension. Transactions of the
Association for Computational Linguistics, 8:141–
155.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2019. CommonsenseQA: A ques-
tion answering challenge targeting commonsense

https://github.com/huggingface/datatrove
https://github.com/huggingface/datatrove
https://doi.org/10.57967/hf/3744
https://doi.org/10.57967/hf/3744
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://github.com/pluto-junzeng/ChineseSquad
https://doi.org/10.18653/v1/2020.emnlp-main.185
https://doi.org/10.18653/v1/2020.emnlp-main.185
https://arxiv.org/abs/2402.09668
https://arxiv.org/abs/2210.01613
https://arxiv.org/abs/2210.01613
https://arxiv.org/abs/2412.03304
https://arxiv.org/abs/2412.03304
https://arxiv.org/abs/2412.03304
https://arxiv.org/abs/2402.06619
https://arxiv.org/abs/2402.06619
https://doi.org/10.18653/v1/2023.trustnlp-1.18
https://doi.org/10.18653/v1/2023.trustnlp-1.18
https://doi.org/10.1162/tacl_a_00305
https://doi.org/10.1162/tacl_a_00305
https://doi.org/10.1162/tacl_a_00305
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421


knowledge. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4149–4158, Minneapolis, Minnesota. Association for
Computational Linguistics.

Alexey Tikhonov and Max Ryabinin. 2021. It’s all in the
heads: Using attention heads as a baseline for cross-
lingual transfer in commonsense reasoning. Preprint,
arXiv:2106.12066.

Together Computer. 2023. Redpajama: An open source
recipe to reproduce llama training dataset. Accessed
30 Jan. 2025.

Ankit Kumar Upadhyay and Harsit Kumar Upadhya.
2023. Xnli 2.0: Improving xnli dataset and perfor-
mance on cross lingual understanding (xlu). Preprint,
arXiv:2301.06527.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2023. Attention is all
you need. Preprint, arXiv:1706.03762.

Guillaume Wenzek, Marie-Anne Lachaux, Alexis Con-
neau, Vishrav Chaudhary, Francisco Guzmán, Ar-
mand Joulin, and Edouard Grave. 2019. Ccnet: Ex-
tracting high quality monolingual datasets from web
crawl data. arXiv preprint arXiv:1911.00359.

Alexander Wettig, Aatmik Gupta, Saumya Malik, and
Danqi Chen. 2024. Qurating: Selecting high-
quality data for training language models. Preprint,
arXiv:2402.09739.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale,
Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and
Colin Raffel. 2021. mT5: A massively multilingual
pre-trained text-to-text transformer. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 483–498, On-
line. Association for Computational Linguistics.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can
a machine really finish your sentence? Preprint,
arXiv:1905.07830.

Wenxuan Zhang, Sharifah Mahani Aljunied, Chang Gao,
Yew Ken Chia, and Lidong Bing. 2023. M3exam:
A multilingual, multimodal, multilevel benchmark
for examining large language models. Preprint,
arXiv:2306.05179.

Wanjun Zhong, Ruixiang Cui, Yiduo Guo, Yaobo
Liang, Shuai Lu, Yanlin Wang, Amin Saied, Weizhu
Chen, and Nan Duan. 2023. Agieval: A human-
centric benchmark for evaluating foundation models.
Preprint, arXiv:2304.06364.

https://doi.org/10.18653/v1/N19-1421
https://arxiv.org/abs/2106.12066
https://arxiv.org/abs/2106.12066
https://arxiv.org/abs/2106.12066
https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data
https://arxiv.org/abs/2301.06527
https://arxiv.org/abs/2301.06527
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2402.09739
https://arxiv.org/abs/2402.09739
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.18653/v1/2021.naacl-main.41
https://arxiv.org/abs/1905.07830
https://arxiv.org/abs/1905.07830
https://arxiv.org/abs/2306.05179
https://arxiv.org/abs/2306.05179
https://arxiv.org/abs/2306.05179
https://arxiv.org/abs/2304.06364
https://arxiv.org/abs/2304.06364


A Dataset Information

Based on the results of our experiments, we create the dataset, named FineWeb2-HQ, by filtering all avail-
able FineWeb-2 data (version 2.0.1) in 20 languages using the MLP MKC+ approach with 10% retention
rate. The statistics of the resulting dataset are presented in Table 6. We release the dataset under the Open
Data Commons Attribution License (ODC-By) v1.0 license at huggingface.co/datasets/epfml/FineWeb2-
HQ.
The main use case of our dataset is LLM pretraining, however, the dataset may also be used for other
natural language processing tasks.

Table 6: Statistics (number of documents and disk size) of the dataset resulting from filtering FineWeb-2 using the
MLP MKC+ approach with 10% retention rate in 20 languages.

Language Number of documents Disk size

Russian 55,220,956 1.2TB
Chinese 54,211,986 784GB
German 43,095,728 618GB
Spanish 40,057,637 515GB
Japanese 34,185,427 393GB
French 32,248,772 483GB
Italian 21,180,304 269GB
Portuguese 18,135,468 222GB
Polish 13,384,885 168GB
Dutch 12,920,963 160GB
Indonesian 8,911,149 125GB
Turkish 8,578,808 100GB
Czech 5,995,459 104GB
Arabic 5,560,599 94GB
Persian 5,107,187 69GB
Hungarian 4,527,332 79GB
Swedish 4,382,454 61GB
Greek 4,346,440 84GB
Danish 4,082,751 61GB
Vietnamese 4,003,956 59GB

B Limitations

A limitation of our work is that we perform experiments on relatively small 1B models with one seed
per experiment. We use 1B models to balance the trade-off between the cost of pretraining and the
measured signal from the experiments, as found in prior work (Penedo et al., 2024a,c; Li et al., 2024b).
Additionally, we compare our method to one multilingual baseline, FineWeb-2. However, since FineWeb-2
is the current state-of-the-art and due to our limited computational budget, we decided to allocate more
compute towards understanding the mechanics of the data selection process, rather than confirming our
results across previous datasets. Nevertheless, computational constraints prevented us from ablating every
decision—such as our choice to use only the first 512 tokens for classification. We assume that if the
first 512 tokens demonstrate good quality, the remainder of the document likely does as well. Given the
strong performance achieved using the first 512 tokens, we prioritized this methodological simplicity.
To facilitate further exploration of alternative selection strategies, we have made FineWeb2-embedded7

available to the community, which contains embeddings for all 512-token chunks.
Although we develop our framework on languages from diverse language families, with different

writing systems and with varying resource availability to find an approach that best generalizes for general

7huggingface.co/datasets/epfml/FineWeb2-embedded

https://huggingface.co/datasets/epfml/FineWeb2-HQ
https://huggingface.co/datasets/epfml/FineWeb2-HQ
https://huggingface.co/datasets/epfml/FineWeb2-embedded


web crawl text data across languages, classifier training datasets have no quality guarantees for other
languages and may result in performance differences that are not visible in our experiments.

Since we focus on simple methods with broad availability and low computational cost, we discuss the
computational cost difference between FastText and Transformer embeddings-based methods. While
FastText classifiers are cheap to train and inference and can be efficiently run on CPU, Transformer-based
methods require an initial computation of embeddings. To mitigate the higher cost of Transformer
embeddings, we use a relatively small XLM-RoBERTa model and additionally release the dataset with
precomputed embeddings7. The total cost for computing the embeddings is approximately 4K compute
hours for the 20 languages.

We base our dataset on the FineWeb-2 dataset which conforms to Common Crawl robots.txt opt-outs (at
crawl time), removes personally identifiable content, and offers a form for requesting data removal. Since
ensuring privacy and fairness of our dataset further is beyond the scope of this work, we make the dataset
publicly available. This allows other researchers and the public to analyze potential biases, a critical task
given that data curation is a political process that can introduce cultural and political impacts (Desai et al.,
2024).

C Additional Results

C.1 Model Selection - Per Language Results

For clarity, we present the individual benchmark results of the 1B-parameter model trained on 119B
tokens for each language in the following tables: Table 7 for Chinese, Table 8 for French, Table 9 for
German, Table 10 for Arabic, and Table 11 for Danish.

Approach MLP MKC+ MLP MKC CS MKC FT MKC FT MKC+ Baseline CS MKC+

Average Rank 1.7333 2.4333 4.0667 4.0667 4.4667 5.2333 6.0000
AGIEval 0.2995 0.2948 0.2897 0.2919 0.2817 0.2853 0.2773
Belebele 0.3300 0.3233 0.3178 0.3133 0.3133 0.3056 0.3022
C3 0.4550 0.4480 0.4400 0.4500 0.4400 0.4400 0.4370
C-Eval 0.3095 0.3060 0.2760 0.2903 0.2906 0.2878 0.2805
CMMLU 0.3312 0.3259 0.3041 0.3043 0.3060 0.3009 0.2995
CMRC 2018 0.2224 0.2125 0.1614 0.2251 0.2164 0.1949 0.1866
HellaSwag 0.3790 0.3800 0.3530 0.3680 0.3660 0.3510 0.3370
M3Exam 0.3319 0.3245 0.3084 0.3201 0.3245 0.3216 0.3245
X-CODAH 0.3033 0.3000 0.3233 0.3100 0.2900 0.2967 0.3067
X-CSQA 0.2740 0.2680 0.2690 0.2610 0.2520 0.2510 0.2650
XCOPA 0.6200 0.6400 0.6180 0.5740 0.5740 0.6000 0.5620
OCNLI 0.5470 0.5470 0.5340 0.5250 0.5600 0.5420 0.5060
Chinese-SQuAD 0.0929 0.1097 0.0865 0.0889 0.0850 0.0777 0.0585
XStoryCloze 0.5800 0.5630 0.5710 0.5560 0.5610 0.5580 0.5570
XWINO 0.6429 0.6528 0.6587 0.6131 0.5992 0.6429 0.6111

Table 7: Chinese Benchmark performance comparison: Average rank between FineWeb-2 baseline and our proposed
filtering methods (FT, MLP, and CS) trained on MKC+ or MKC, retaining top 10% of documents. The average rank
is computed across FineTasks for 1B-parameter models evaluated after 119B tokens.

C.2 Threshold Selection

Complete Result. To confirm that the CS filtering method is not competitive with MLP and FT, even
when a higher percentage of documents is retained, we present the complete threshold selection results,
including the CS method, in Table 12 in addition to the results shown in Section 4.2.2 (Table 2).

Document Length Bias. Motivated by the observed bias in certain approaches favoring the selection
of shorter documents, as seen in Figure 3, Figure 4 and Table 13, we examine how this bias interacts with
performance when retaining more documents. As demonstrated in Table 13, the MLP MKC approach
shows a tendency to retain shorter documents, while achieving higher performance with an increased
number of retained documents. In contrast, the CS and FT filtering methods present mixed results,
suggesting that the optimal threshold selection may be influenced by additional factors.



Approach FT MKC+ MLP MKC+ MLP MKC FT MKC CS MKC CS MKC+ Baseline

Average Rank 3.2222 3.5000 3.5556 3.7778 4.0000 4.6667 5.2778
Belebele 0.3378 0.3533 0.3678 0.3489 0.3444 0.3344 0.3444
HellaSwag 0.5380 0.5380 0.4990 0.5150 0.5280 0.5070 0.5180
X-CSQA 0.2820 0.2740 0.2730 0.2990 0.2850 0.2900 0.2870
XNLI 2.0 0.7340 0.7400 0.7430 0.7230 0.7450 0.7330 0.7180
FQuAD 0.2597 0.2803 0.3032 0.2981 0.2411 0.2476 0.2401
MMLU 0.2896 0.2895 0.2925 0.2886 0.2806 0.2815 0.2706
Mintaka 0.0710 0.0438 0.0334 0.0670 0.0610 0.0976 0.0712
X-CODAH 0.3000 0.2667 0.2867 0.2767 0.3000 0.2800 0.2633
ARC (Challenge) 0.3120 0.3180 0.3090 0.3060 0.2950 0.2830 0.2850

Table 8: French Benchmark performance comparison: Average rank between FineWeb-2 baseline and our proposed
filtering methods (FT, MLP, and CS) trained on MKC+ or MKC, retaining top 10% of documents. The average rank
is computed across FineTasks for 1B-parameter models evaluated after 119B tokens.

Approach MLP MKC+ FT MKC+ FT MKC CS MKC MLP MKC CS MKC+ Baseline

Average Rank 3.1250 3.1250 3.5000 3.7500 4.5000 4.7500 5.2500
MMLU 0.2940 0.2879 0.2926 0.2770 0.2905 0.2764 0.2718
ARC (Challenge) 0.2760 0.2850 0.2820 0.2880 0.2830 0.2640 0.2680
Mintaka 0.0580 0.0548 0.0735 0.0576 0.0494 0.0766 0.0498
Belebele 0.3611 0.3578 0.3544 0.3544 0.3567 0.3422 0.3544
X-CODAH 0.3367 0.3500 0.3300 0.3567 0.3400 0.3600 0.3467
X-CSQA 0.2978 0.3008 0.2877 0.2887 0.2857 0.2918 0.2787
HellaSwag 0.4640 0.4710 0.4870 0.4820 0.4540 0.4390 0.4470
XNLI 2.0 0.6620 0.6530 0.6740 0.6440 0.6610 0.6520 0.6890

Table 9: German Benchmark performance comparison: Average rank between FineWeb-2 baseline and our proposed
filtering methods (FT, MLP, and CS) trained on MKC+ or MKC, retaining top 10% of documents. The average rank
is computed across FineTasks for 1B-parameter models evaluated after 119B tokens.

Approach MLP MKC+ MLP MKC FT MKC+ Baseline CS MKC+ CS MKC FT MKC

Average Rank 2.7812 3.2500 3.6875 3.9688 3.9688 5.0312 5.3125
EXAMS 0.3537 0.3656 0.3552 0.3582 0.3443 0.3262 0.3346
MMLU 0.4007 0.3909 0.4023 0.3894 0.3912 0.3781 0.3885
ARC (Easy) 0.4330 0.4230 0.4210 0.4120 0.4020 0.3940 0.4080
AlGhafa SciQ 0.6915 0.7005 0.6965 0.6854 0.6724 0.6683 0.6804
Belebele 0.3456 0.3356 0.3322 0.3311 0.3356 0.3567 0.3233
SOQAL 0.7333 0.6867 0.7000 0.7200 0.7267 0.6867 0.7133
MLQA 0.2386 0.2402 0.1928 0.1901 0.2189 0.2154 0.1793
TyDi QA 0.1547 0.1476 0.1230 0.1441 0.1223 0.1097 0.1182
AlGhafa RACE 0.3720 0.3740 0.3640 0.3710 0.3590 0.3660 0.3730
ARCD 0.3638 0.3505 0.3235 0.3354 0.3358 0.3432 0.3043
X-CODAH 0.2600 0.2533 0.2567 0.2633 0.2633 0.2500 0.2600
AlGhafa PIQA 0.6360 0.6320 0.6400 0.6240 0.6320 0.6320 0.6370
X-CSQA 0.2740 0.2810 0.2770 0.2900 0.2880 0.2720 0.2770
XNLI 2.0 0.6570 0.6910 0.6990 0.7010 0.6910 0.6900 0.6770
HellaSwag 0.4270 0.4220 0.4280 0.4250 0.4260 0.4320 0.4150
XStoryCloze 0.6150 0.6100 0.6100 0.6070 0.6130 0.6180 0.5930

Table 10: Arabic Benchmark performance comparison: Average rank between FineWeb-2 baseline and our proposed
filtering methods (FT, MLP, and CS) trained on MKC+ or MKC, retaining top 56% of documents. The average rank
is computed across FineTasks for 1B-parameter models evaluated after 119B tokens.

C.3 Training Data Analysis

We give details on the variation in the average length of documents retained by our model-based filtering
method MLP for Chinese, French, Arabic, and Danish with different training datasets. The results are
shown for German in Figure 5 and for all other languages in Figure 6.



Approach CS MKC+ MLP MKC+ FT MKC+ Baseline

Average Rank 1.0000 2.5000 3.1667 3.3333
ARC (Challenge) 0.2820 0.2650 0.2730 0.2560
HellaSwag 0.4950 0.4850 0.4750 0.4750
Belebele 0.3333 0.3289 0.3189 0.3289

Table 11: Danish Benchmark performance comparison: Average rank between FineWeb-2 baseline and our proposed
filtering methods (FT, MLP, and CS) trained on MKC+ or MKC, retaining top 65% of documents. The average rank
is computed across FineTasks for 1B-parameter models evaluated after 119B tokens.

Approach Threshold Average Rank

MLP MKC+ 10% 11.73
MLP MKC+ 15% 12.13
MLP MKC 20% 15.07
MLP MKC 15% 15.09
MLP MKC+ 20% 15.40
MLP MKC 10% 16.09
FT MKC+ 10% 18.61
CS MKC 15% 19.02
CS MKC 20% 19.24
FT MKC 15% 19.84
FT MKC 10% 20.02
CS MKC 10% 20.67
FT MKC 20% 20.80
FT MKC+ 15% 22.05
FT MKC+ 20% 22.52
CS MKC+ 15% 24.66
CS MKC+ 20% 25.08
Baseline – 25.54
CS MKC+ 10% 26.94

Table 12: Benchmark performance comparison: Average rank between FineWeb-2 baseline and our proposed
filtering methods (FT, MLP) trained on MKC+ or MKC, retaining top 10%, 15% or 20% of documents. The average
rank is computed across FineTasks for 1B-parameter models evaluated on Chinese, German and French after 70B
and 119B tokens.
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Figure 3: Document length comparison: Average length and standard deviation in FineWeb-2 before and after 10%
retention filtering. Red horizontal line shows average document length, red dots indicate medians. Length measured
by space-separated tokens.

C.4 Replay of Original Data

We explore whether incorporating a small percentage of original raw data (replay) can help improve
performance. We do this for our best FastText (FT MKC+) and Transformer approaches (MLP MKC+).
Table 14 presents the results of experiments where 5% and 10% unfiltered data were mixed into the
training dataset, alongside results from training without any replay. Although, the FT MKC+ filters shows
mixed signal, our MLP MKC+ approach clearly demonstrates that replay does not improve performance,
indicating the data selection already retains enough diversity. In cases of less diverse datasets, replay was
shown to offer benefits (Bethune et al., 2025; Chen et al., 2023).
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Figure 4: Document length comparison: Average length and standard deviation in FineWeb-2 before and after 10%
retention filtering. Red horizontal line shows average document length, red dots indicate medians. Length measured
by space-separated tokens.

Approach Chinese French German Arabic Danish

MLP MKC+ 150B (9%) 89B (12%) 119B (12%) 78B (61%) 71B (66%)
MLP MKC 105B (7%) 72B (10%) 87B (9%) 75B (59%) –

FT MKC+ 221B (14%) 70B (10%) 63B (6% ) 77B (61%) 70B (65%)
FT MKC 190B (12%) 43B (6%) 65B (7%) 80B (63%) –

CS MKC+ 170B (11%) 126B (17%) 166B (17%) 82B (65%) 77B (71%)
CS MKC 161B (10%) 132B (18%) 172B (18%) 83B (65%) –

Baseline 1597B 730B 973B 127B 108B

Table 13: Token retention comparison: Counts in FineWeb-2 before and after filtering using our approach with 10%
document retention for Chinese, French and German, 56% for Arabic, and 65% for Danish. Token counts represent
tokenized dataset sizes using the multilingual Mistral v3 (Tekken) tokenizer (Mistral AI, 2024).
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Figure 5: Document length comparison: Average length and standard deviation in FineWeb-2 before and after
filtering using MLP method with 10% retention on different training datasets. Red horizontal line shows average
document length, red dots indicate medians. Length measured by space-separated tokens.

C.5 Impact on multilingual model training
This section presents the results of our MLP MKC+ approach on multilingual model training for Chinese
(Table 15), Arabic (Table 16), German (Table 17), and Danish (Table 18), in addition to the results for
French discussed in Section 4.2.5.

C.6 Data Contamination Analysis
To ensure the validity of our approach, we conduct decontamination experiments, as web crawl data may
include evaluation benchmark tasks. While Li et al. (2024b) addressed similar concerns, our approach
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Figure 6: Document length comparison: Average length and standard deviation in FineWeb-2 before and after
filtering using MLP method with 10% retention for Chinese and French, 56% for Arabic and 65% for Danish on
different training datasets. Red horizontal line shows average document length, red dots indicate medians. Length
measured by space-separated tokens.

Approach Mixture Rate Average Rank

MLP MKC+ 5% 5.09
MLP MKC+ 0% 5.16
MLP MKC+ 10% 5.40
FT MKC+ 10% 7.17
FT MKC+ 0% 7.51
FT MKC+ 5% 8.66

Table 14: Benchmark performance comparison: Average rank of our MLP MKC+ and FT MKC+ approaches with
10% document retention, mixed with 0%, 5%, or 10% of original FineWeb-2 dataset. The average rank is computed
across FineTasks for 1B-parameter models evaluated on Chinese, German and French after 70B and 119B tokens.

Dataset Ours OursM FW-2M FW-2

Average Rank 1.5667 2.1667 2.9000 3.3667
AGIEval 0.2995 0.2863 0.2894 0.2853
Belebele 0.3300 0.3456 0.3189 0.3056
C3 0.4550 0.4520 0.4480 0.4400
C-Eval 0.3095 0.2848 0.2683 0.2878
CMMLU 0.3312 0.3064 0.2967 0.3009
CMRC 2018 0.2224 0.2689 0.2090 0.1949
HellaSwag 0.3790 0.3740 0.3740 0.3510
M3Exam 0.3319 0.3040 0.3304 0.3216
X-CODAH 0.3033 0.3067 0.2800 0.2967
X-CSQA 0.2740 0.2810 0.2780 0.2510
XCOPA 0.6200 0.6020 0.5860 0.6000
OCNLI 0.5470 0.5320 0.4910 0.5420
Chinese-SQuAD 0.0929 0.1304 0.1017 0.0777
XStoryCloze 0.5800 0.5760 0.5650 0.5580
XWINO 0.6429 0.6409 0.6468 0.6429

Table 15: Chinese benchmark performance: Multilingual LLMs (M ) trained on FineWeb-2 or our MLP MKC+

refined dataset (retaining top 10% for Chinese, German and French, 56% for Arabic, 65% for Danish) with 595B
tokens, compared to monolingual models trained on 119B tokens. The average rank is computed across FineTasks
for 1B-parameter models.



Dataset OursM Ours FW-2 FW-2M

Average Rank 1.9688 2.0000 2.7500 3.2812
EXAMS 0.3336 0.3537 0.3582 0.3076
MMLU 0.3828 0.4007 0.3894 0.3599
ARC (Easy) 0.4190 0.4330 0.4120 0.3760
AlGhafa SciQ 0.6764 0.6915 0.6854 0.6563
Belebele 0.3511 0.3456 0.3311 0.3344
SOQAL 0.7000 0.7333 0.7200 0.6533
MLQA 0.2208 0.2386 0.1901 0.2085
TyDi QA 0.1634 0.1547 0.1441 0.1429
AlGhafa RACE 0.3830 0.3720 0.3710 0.3770
ARCD 0.3377 0.3638 0.3354 0.2970
X-CODAH 0.2767 0.2600 0.2633 0.2767
AlGhafa PIQA 0.6170 0.6360 0.6240 0.6160
X-CSQA 0.2860 0.2740 0.2900 0.2660
XNLI 2.0 0.7080 0.6570 0.7010 0.7340
HellaSwag 0.4390 0.4270 0.4250 0.4240
XStoryCloze 0.6370 0.6150 0.6070 0.6160

Table 16: Arabic benchmark performance: Multilingual LLMs (M ) trained on FineWeb-2 or our MLP MKC+

refined dataset (retaining top 10% for Chinese, German and French, 56% for Arabic, 65% for Danish) with 595B
tokens, compared to monolingual models trained on 119B tokens. The average rank is computed across FineTasks
for 1B-parameter models.

Dataset OursM Ours FW-2 FW-2M

Average Rank 1.5000 2.1250 2.9375 3.4375
MMLU 0.2918 0.2940 0.2718 0.2691
ARC (Challenge) 0.2740 0.2760 0.2680 0.2640
Mintaka 0.0821 0.0580 0.0498 0.0660
Belebele 0.3956 0.3611 0.3544 0.3633
X-CODAH 0.3500 0.3367 0.3467 0.3167
X-CSQA 0.3048 0.2978 0.2787 0.2787
HellaSwag 0.4690 0.4640 0.4470 0.4430
XNLI 2.0 0.6420 0.6620 0.6890 0.6340

Table 17: German benchmark performance: Multilingual LLMs (M ) trained on FineWeb-2 or our MLP MKC+

refined dataset (retaining top 10% for Chinese, German and French, 56% for Arabic, 65% for Danish) with 595B
tokens, compared to monolingual models trained on 119B tokens. The average rank is computed across FineTasks
for 1B-parameter models.

Dataset OursM Ours FW-2M FW-2

Average Rank 1.6667 2.1667 3.0000 3.1667
ARC (Challenge) 0.2920 0.2650 0.2600 0.2560
HellaSwag 0.4710 0.4850 0.4560 0.4750
Belebele 0.3700 0.3289 0.3311 0.3289

Table 18: Danish benchmark performance: Multilingual LLMs (M ) trained on FineWeb-2 or our MLP MKC+

refined dataset (retaining top 10% for Chinese, German and French, 56% for Arabic, 65% for Danish) with 595B
tokens, compared to monolingual models trained on 119B tokens. The average rank is computed across FineTasks
for 1B-parameter models.

follows the methodology of Brown et al. (2020). Specifically, we perform 13-gram decontamination of the
LLM training data separately for English and French evaluation benchmarks. However, unlike the original
approach, we remove the entire document if it is flagged as contaminated, using the implementation
provided in DataTrove (Penedo et al., 2024b).

Tables 19 and 20 present the results of decontamination experiments for English and French, respec-
tively. We used the following experimental setup (removed document contamination rates): baseline
FineWeb English (0.16%), MLP MKC+ English with 10% retention (0.19%), baseline FineWeb-2 French



Dataset Ours OursD FW∗ FW∗
D

Average Rank 1.5000 2.1111 3.0556 3.3333
ARC (Challenge) 0.3550 0.3440 0.3010 0.2880
ARC (Easy) 0.6670 0.6520 0.5880 0.5700
CommonsenseQA 0.3870 0.4000 0.3850 0.3820
HellaSwag 0.6040 0.6040 0.5930 0.5890
MMLU 0.3400 0.3220 0.3030 0.3050
OpenBookQA 0.3860 0.3840 0.3560 0.3740
PIQA 0.7510 0.7590 0.7620 0.7600
WinoGrande 0.5720 0.5550 0.5550 0.5570
TriviaQA 0.0820 0.0380 0.0370 0.0250

Table 19: English benchmark performance: Our MLP MKC+ approach (retaining top 10% documents) in both
decontaminated (D) and non-decontaminated versions, compared to baseline FineWeb datasets with the same
variants. The average rank is computed across SmolLM tasks for 1B-parameter models trained on 119B tokens.

Dataset Ours OursD FW-2D FW-2

Average Rank 2.0556 2.0556 2.7222 3.1667
Belebele 0.3533 0.3400 0.3778 0.3444
HellaSwag 0.5380 0.5350 0.5180 0.5180
X-CSQA 0.2740 0.2810 0.2730 0.2870
XNLI 2.0 0.7400 0.7400 0.7070 0.7180
FQuAD 0.2803 0.2620 0.2890 0.2401
MMLU 0.2895 0.2875 0.2711 0.2706
Mintaka 0.0438 0.0797 0.0658 0.0712
X-CODAH 0.2667 0.2900 0.2800 0.2633
ARC (Challenge) 0.3180 0.3110 0.2880 0.2850

Table 20: French Benchmark performance: Our MLP MKC+ approach (retaining top 10% of the documents) in
both decontaminated (D) and non-decontaminated versions, compared to baseline FineWeb-2 datasets with the
same variants. The average rank is computed across FineTasks for 1B-parameter models trained on 119B tokens.

(0.14%), and MLP MKC+ French with 10% retention (0.14%). All models were trained on 119B tokens.
Additionally, we compare the results against equivalent training runs without decontamination to further
analyze its impact. For an example of a contaminated sample, see Appendix G.

For English models, decontamination slightly reduces performance both for our approach and baseline
FineWeb data. Even after decontamination, our approach still outperforms the baseline trained on
non-decontaminated data. For French models, our approach performs similarly on decontaminated and
non-decontaminated data, both outperforming baseline FineWeb-2. Interestingly, decontaminated baseline
data yields better results than its non-decontaminated counterpart.



D List of evaluation benchmarks and metrics

We provide a detailed overview of the evaluation benchmarks used to assess our models’ performance,
along with their respective evaluation metrics in Table 21. For non-English tasks and English MMLU,
we use the cloze multiple-choice prompt, which allows the model to directly predict each option instead
of using the standard prompt format with A/B/C/D letter prefixes as targets. This approach was chosen
because it has been shown to serve as a more reliable performance indicator earlier in training (Kydlíček
et al., 2024). We evaluate the models in a 0-shot setting.

Benchmark Chinese French German Arabic Danish English Evaluation metric
AGIEval (Zhong et al., 2023) ✓ Normalized accuracy
AlGhafa ARC (Almazrouei et al., 2023) ✓ Normalized accuracy
AlGhafa PIQA (Almazrouei et al., 2023) ✓ Normalized accuracy
AlGhafa RACE (Almazrouei et al., 2023) ✓ Normalized accuracy
AlGhafa SciQ (Almazrouei et al., 2023) ✓ Normalized accuracy
ArabicMMLU (Koto et al., 2024) ✓ Normalized accuracy
ARC (Clark et al., 2018) ✓ Normalized accuracy
ARCD (Mozannar et al., 2019) ✓ F1 score
Belebele (Bandarkar et al., 2024) ✓ ✓ ✓ ✓ ✓ Normalized accuracy
C3 (Sun et al., 2020) ✓ Normalized accuracy
C-Eval (Huang et al., 2023) ✓ Normalized accuracy
Chinese-SQuAD (Pluto-Junzeng, 2019) ✓ F1 score
CMMLU (Li et al., 2024a) ✓ Normalized accuracy
CMRC 2018 (Cui et al., 2019) ✓ F1 score
CommonsenseQA (Talmor et al., 2019) ✓ Normalized accuracy
EXAMS (Hardalov et al., 2020) ✓ Normalized accuracy
FQuAD (d’Hoffschmidt et al., 2020) ✓ F1 score
HellaSwag (Zellers et al., 2019) ✓ Normalized accuracy
M3Exam (Zhang et al., 2023) ✓ Normalized accuracy
Meta MMLU (Llama Team, 2024) ✓ ✓ Normalized accuracy
Mintaka (Sen et al., 2022) ✓ ✓ F1 score
MLMM ARC (Lai et al., 2023) ✓ ✓ ✓ Normalized accuracy
MLMM HellaSwag (Lai et al., 2023) ✓ ✓ ✓ ✓ ✓ Normalized accuracy
MLQA (Lewis et al., 2020) ✓ F1 score
MMLU (Hendrycks et al., 2020) ✓ Normalized accuracy
OCNLI (Hu et al., 2020) ✓ Normalized accuracy
OpenBookQA (Mihaylov et al., 2018) ✓ Normalized accuracy
PIQA (Bisk et al., 2019) ✓ Normalized accuracy
SOQAL (Mozannar et al., 2019) ✓ Normalized accuracy
TriviaQA (Joshi et al., 2017) ✓ Quasi-exact match
TyDi QA (Clark et al., 2020) ✓ F1 score
WinoGrande (Sakaguchi et al., 2019) ✓ Normalized accuracy
X-CODAH (Lin et al., 2021a) ✓ ✓ ✓ ✓ Normalized accuracy
XCOPA (Ponti et al., 2020) ✓ Normalized accuracy
X-CSQA (Lin et al., 2021a) ✓ ✓ ✓ ✓ Normalized accuracy
XNLI 2.0 (Upadhyay and Upadhya, 2023) ✓ ✓ ✓ Normalized accuracy
XStoryCloze (Lin et al., 2021b) ✓ ✓ Normalized accuracy
XWINO (Tikhonov and Ryabinin, 2021) ✓ Normalized accuracy

Table 21: List of Evaluation Benchmarks and Metrics used in our setup for Chinese, French, German, Arabic,
Danish, and English.

E Average Rank Computation

To assess the overall performance of different model configurations, we use an average rank metric,
following the methodology of Kydlíček et al. (2024). This metric provides a normalized and robust
measure of performance across diverse benchmarks and languages. By ranking models relative to each
other, it prevents a single high-performing task from disproportionately influencing the overall assessment.
For example, a model with an exceptionally high score on one benchmark but mediocre results on others
might rank lower than a model with consistently strong performance across all tasks. The procedure is as
follows:

1. Model Training: We train a model for each parameter configuration we want to ablate on.

2. Benchmark Evaluation: We evaluate each model on all the selected benchmarks.



3. Individual Ranking: For every parameter configuration, we rank all models according to their
performance, assigning rank 1 to the best model, rank 2 to the next, and so on.

4. Average Rank Calculation: We compute the final average rank for each model as the mean of its
ranks across all parameter configurations.

F FineWeb documents in different scoring approaches

To illustrate the types of documents each classifier scores highly or poorly, we present the highest- and
lowest-scoring FineWeb examples for each of our classifier approaches (FT MKC+, MLP MKC+, CS
MKC+). These examples were selected from the randomly chosen FineWeb test dataset (10K samples)
used to validate the training of our model-based classifiers.

F.1 FastText Classifier (FT)

Highest score:

hi. i couldn’t solve my problem because it has two conditional logical propositions. the problem
is:can anyone help me about this, thanks =)we’re expected to know that: . is equivalent tofind a
logically equivalent proposition for:by first writing its contrapositive, and then applying demorgan’s
lawand the equality forthey were trying to be helpful by outlining the steps we should follow,. .
but i think they made it more confusing.i don’t see the purpose of using the contrapositive here..
. i wouldn’t have done it that way.besides, the statement is a tautology . . .which gives us: .and
this is a tautology: "a thing implies itself" ... which is always true.i don’t know of any "logically
equivalent proposition" we can write . . .

Lowest score:

|starts||23 sep 2016 (fri) (one day only)|want to travel soon but donâĂŹt wish to fork out a
fortune for flights? check out todayâĂŹs promotion from jetstar featuring promo fares fr
$35 all−in valid for travel period commencing 12 october 2016donâĂŹt miss out! all−in
frenzy fares to hong kong, penang and more from $35.sale ends 23 sep, 11pm!|travelling||
price||travel period||find flight||penang||$35^|| [...]

F.2 Multi-Layer Perceptron (MLP)

Highest score:

Naqhadeh County is a county in West Azerbaijan Province in Iran. The capital of the county is
Naqadeh. At the 2006 census, the county’s population was 117,831, in 27,937 families. The county
is subdivided into two districts: the Central District and Mohammadyar District. The county has
two cities: Naqadeh and Mohammadyar.

Lowest score:

Custom Wedding Gifts
Personalized photo frames, albums & keepsakes. Heirloom quality!
Custom Engraved Journals
Handmade in Florence Italy. Dozens of sizes and paper styles!
Awesome Leather Journals
Personalized, Customizable, Artisan made in Santa Fe, NM.
Ink Rendering from Photos
100% Hand painted with unique style by pro artists. From $49.



F.3 Cosine Similarity (CS)

Highest score:

When you are renting a 5, 10, 15, 20, 30 or 40 yard dumpster, you want a company you can trust
with prices that make you smile. Give us a call today and see the difference we can make in your
next construction or clean out project.
Simply give us a call and we will help you figure out your dumpster rental needs.
Our dumpsters usually go out same-day or next-day depending on when you call.
We provide top-notch service, while going easy on your bottom line. What more could you ask
for?
Our trained operators are here to give you a fast and hassle-free experience from start to finish.[...]

Lowest score:

Cooperative flat 206/J
- Cooperative flat 201/J - Sold
2(1)+kitchenette, 50,1 m2Cooperative flat 202/J - Sold
2(1)+kitchenette, 44,9 m2Cooperative flat 203/J - Sold
2(1)+kitchenette, 50,6 m2Cooperative flat 204/J - Sold
1+kitchenette, 27,1 m2Cooperative flat 205/J - Sold
2(1)+kitchenette, 50,1 m2Cooperative flat 206/J - On sale
3+kitchenette 86,7 m2[...]

G Example of a contaminated document

We present an example of a FineWeb document that was removed during our decontamination pipeline.

MMLU contaminated document (matched 13-gram in bold):

Here is our diagram of the Preamble to the Constitution of the United States. It is based on our
understanding of the use of "in order to" as a subordinating conjunction that introduces a series
of infinitival clauses (without subjects) that, in turn, modify the compound verbs "do ordain" and
"establish."
See A Grammar of Contemporary English by Randolph Quirk, Sidney Greenbaum, Geoffrey
Leech, and Jan Svartvik. Longman Group: London. 1978. p. 753.
We the People of the United States, in Order to form a more perfect Union, establish Justice,
insure domestic Tranquility, provide for the common defence, promote the general Welfare,
and secure the Blessings of Liberty to ourselves and our Posterity, do ordain and establish this
Constitution for the United States of America.
If you have alternative rendering for this sentence, we would be happy to hear of it. Use the e-mail
icon to the left.
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